产品经理还不懂数据?一文详解数据分析体系构成框架

产品运营数据分析包含哪些(产品经理还不懂数据?一文详解数据分析体系构成框架)
  导读:数据对于产品的发展起着决定性的指导作用,那么公司在运营的过程中具体需要一个什么样的数据来支撑服务呢?本文作者列举了产品经理需要了解的数据分析体系,一起来看看吧。

本文来自于我的新书《高阶产品经理必修课》摘录。

在很多不成熟的公司中,虽然也有使用数据去验证产品的思路,但是他们在实际工作中往往是这样取用数据的:

产品部同事找到数据分析师,问他昨天刚上线的版本用户点击率是多少。

运营部同事找到数据分析师,问他前两天上线的拉新活动是否带来了用户量的增加。

领导找到数据分析师,问他这两天的订单量是否有所增长,上月交易额环比增长是多少。

可见,各个岗位都会有自己的数据需求,所以数据分析师只能逐个地进行数据计算。由于人力资源有限,数据分析师往往无法及时反馈所有的数据需求,这将会导致一些运营活动或产品规划错过最佳的时机。例如,在“双11”前夕想要准备“双11”促销活动,却迟迟拿不到过往的运营活动数据。

正是基于这样或那样的原因,很多企业演化出了一类数据产品——数据仪表盘,如图1所示。

图1 数据仪表盘

数据仪表盘就是将各个数据需求方常关注的数据汇总在一张报表中,这样大家可以在这里统一看到整个产品的用户数、交易数等的变化,能在一定程度上满足大家对数据的需求。

但是随之而来的新问题如下:

产品部的同事抱怨:虽然看到昨天新上的版本中用户转化率下跌了,但是根本看不出来原因是什么,说不定是运营部的活动导致的。

运营部的同事抱怨:我虽然看到了拉新数,但我有三个用户拉新渠道,到底哪个拉新渠道的拉新能力最强,带来的用户质量最高呢?

面对这样的进阶需求,就需要一套完整的数据分析体系来做支撑,进而来帮助我们掌握数据变化情况并快速定位变化背后的原因。

一提到数据分析体系,常见的一个认知误区就是将数据分析体系等同于单一的某一个数据分析产品,如活动运营监控平台、用户画像平台等。

其实这里最大的错误就是将一个体系割裂开来,只看到了承载数据的产品而没有重点关注使用者的使用方法,就好像认为数据分析一定要有一把“利刃”,但是却不去关心舞剑者的功力一样。

最早提出这一认知的是钱学森先生,他在系统工程学中提出了软系统概念:

任意一个体系要想发挥正确价值,必须通过产品与使用者这两部分共同协作,这两者合二为一称为软系统。

所以数据分析体系的正确定义应该是:

数据分析体系通常由数据使用者的分析模型和数据分析平台这两部分构成。

这也告诉我们在数据分析学习与搭建数据分析体系的过程中,掌握使用数据的方法,方能以正确的方法去解读数据。但在部分公司的运营过程中,往往忽视了这一点,导致搭建出的完整数据分析平台无人使用。

确切地说,是大家没有以正确的思维或方式去使用,还是以老式的思维使用新的系统,并没有在思维与认知上进行升级,从而无法发挥其应有的价值。这就好比我们给数据使用者一辆汽车,但他们还是在寻找缰绳以期驾驶汽车。

这时数据产品经理就应该化身企业内部的数据分析咨询师,帮助他们看懂数据背后所反应的价值。所以数据产品经理在一家公司中应该有如图2所示的双重身份。

图2 数据产品经理的双重身份

搞清楚了数据分析体系的定义,接下来就是了解如何才能搭建一个完整的数据分析体系。

笔者曾看到部分数据产品经理候选人的简历中经常会写到自己精通数据分析框架的搭建。而当面试中被问到他们的数据分析体系究竟要怎么落地时,他们给出的回答却是针对DAU(Daily Active User,日活跃用户数量)、留存率等进行管理,但是数据分析体系中的平台建设,就仅仅是对这几个指标的管理吗?那么请问,当遇到了以下场景时,这几个指标要怎么解决我们的问题呢?

场景1:某天某电商出现了GMV(成交总额)下降,此时应该根据哪一个指标解决问题?

场景2:某公司拥有3条产品线,A产品线中又细分为商品运营、活动运营等,3条产品线的若干运营团队都看同一套指标体系吗?

坦白地说,单看孤零零的某个或者某些指标是无法解决问题的,此时就需要依靠数据分析框架来解决问题了。

由前面的数据分析体系可知,数据分析体系落地涉及两个维度。我在《高阶产品经理必修课》书中为大家介绍了两个维度来看看数据分析体系在工作场景中是如何落地的。

维度1:通用数据分析模型

以下是实现通用数据分析模型的方法。

设置目标:确定当下业务中你的目标及完成现状。

问题假说:穷举现状是由哪些问题导致的。

数据证明:通过数据来证明该问题会导致怎样的结果。

数据分析:分析该问题的成因并形成解决方案。

维度2:数据分析平台

在数据分析体系中,数据分析平台的构成包含三大核心要素,分别是北极星指标、数据建模和事件分析。

数据分析平台定义中各要素的具体解析如下所示。

北极星指标:每个阶段针对具体业务领域确立的商业/业务目标

数据建模(又称指标体系):DAU、GMV、留存率、订单量等

事件分析:漏斗模型、海盗模型、杜邦分析等

注意:北极星指标(North Star Metric)又叫作OMTM(One metric that matters),它是第一重要指标,为产品现阶段最为关键的指标。之所以叫北极星指标,是因为就像北极星一样,该指标可以指引全公司所有人员向着同一个方向迈进,是全公司统一的指标。

数据分析体系其实就是通过一系列的方法量化特定的业务,因为我们如果无法量化一个事物,那么本质上就无法衡量它的好坏,也就无法定位业务发展中的症结所在。因此好的数据分析框架就是在告诉我们:当下的整体业务是什么样?为什么会这样?应该怎么办?

回顾前面面试者所说的那几个指标,我们可以发现其根本无法清晰地反映业务上的这三个问题。

当然,这里只介绍了数据分析体系的宏观框架,还未涉及具体的数据分析体系搭建过程,在数据分析实战中还会涉及相应的方法论。

在我们知道了指标体系与其对应的作用后,接下来就要来学习如何为自身企业业务量身打造一套数据指标体系了。

要想搭建一套完整的指标体系,除了对业务有非常熟悉的敏感度之外,拥有一套正确的建设方法论也是必不可少的。

这里我直接给出一个标准的指标体系的建立方法,共分如下4步:

1)确定数据分析目标。

2)纵向指标维度定义(层级设计)。

3)横向指标维度定义(指标填空)。这其中,又分为自上而下探寻(业务域驱动指标定义)和自下而上探寻(功能逆推指标定义)。

4)各维度指标项定义。

三爷,微信公众号:三爷茶馆,人人都是产品经理专栏作家,2019年年度作者。《中台产品经理宝典》作者,原万达高级产品、MBA特约讲师、独立创业者,现叮咚买菜B端产品线负责人,拥有多款集团项目从零到一经验并带领实现商业化布局。

本文原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议。